• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:公绪华,袁振涛,谭怀英. 基于GMM和神经网络的辐射源识别方法[J]. 雷达科学与技术, 2014, 12(5): 482-486.[点击复制]
. [J]. Radar Science and Technology, 2014, 12(5): 482-486.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5716次   下载 1471次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于GMM和神经网络的辐射源识别方法
公绪华,袁振涛,谭怀英
空军装备研究院雷达所
摘要:
针对基于截获雷达脉冲特征参数的辐射源识别问题,通过建立一个高斯混合模型(GMM),采用最大化期望(EM)方法对模型参数进行训练,构建了一个输入为截获雷达脉冲特征参数,输出为雷达辐射源类型的分类器。同时,为实现对分类识别性能对比,进一步提出基于神经网络方法构建雷达辐射源类型分类器。仿真试验结果表明,基于GMM和神经网络构建的两种分类器均能实现对雷达辐射源的在线识别,且当用于训练的样本比例不低于10%时,均能获得90%以上的分类正确率。
关键词:  高斯混合模型  神经网络  雷达脉冲  辐射源识别
DOI:
分类号:
基金项目:
Abstract:
Key words:  

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司