• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:张椰,朱卫纲. 基于迁移学习的SAR图像目标检测[J]. 雷达科学与技术, 2018, 16(5): 533-538.[点击复制]
ZHANG Ye,ZHU Weigang. Target Detection in SAR Images Based on Transfer Learning[J]. Radar Science and Technology, 2018, 16(5): 533-538.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 7080次   下载 2130次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于迁移学习的SAR图像目标检测
张椰,朱卫纲
1.航天工程大学研究生院,北京101416;2.航天工程大学光电装备系,北京101416
摘要:
针对深度卷积神经网络训练需要大数量样本,采用迁移学习的方法辅助网络训练,解决了SAR图像样本不足的问题。通过控制对比实验,对每个卷积块权重进行迁移与分析,使用微调与冻结相结合的训练方式有效提高网络的泛化性与稳定性;然后根据目标检测任务的时效性对网络模型进行改进,提高了网络检测速度的同时减少了网络参数;最后结合复杂场景杂波切片对网络进行训练,降低了背景杂波的虚警目标数量,复杂多目标场景的检测结果表明所提出方法具有较好的检测性能。
关键词:  迁移学习  深度卷积神经网络  SAR目标检测  训练时间
DOI:10.3969/j.issn.1672-2337.2018.05.011
分类号:TN958;TP183
基金项目:
Target Detection in SAR Images Based on Transfer Learning
ZHANG Ye,ZHU Weigang
1.Graduate School,Space Engineering University,Beijing 101416,China;2.Department of Optical and Electronic Equipment,Space Engineering University,Beijing 101416,China
Abstract:
To solve the problem that the training of deep convolution neural network requires a large number of samples,the transfer learning method is used to assist the small SAR image dataset for network training.By contrast experiments,the individual convolution weights are transferred and analyzed.The combination of the fine-tuned weights and the frozen weights is used to improve the generalization and stability of the network.Then,the network model is improved according to the target detection task.The network detection speed is increased and the network parameters are decreased.Finally,the complicated scene clutter slices are used to train the network.The number of false alarm targets under background clutter is reduced.The detection results of complex multi-target scenes show that the proposed method has better detection performance.
Key words:  transfer learning  deep convolution neural network  SAR target detection  training time

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司