• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:张森, 陈继光, 邱丽莉. 蝙蝠优化的二维Tsallis熵多阈值SAR图像分割[J]. 雷达科学与技术, 2019, 17(1): 25-32.[点击复制]
ZHANG Sen, CHEN Jiguang, QIU Lili. Bat Optimized Two-Dimensional Tsallis Entropy Multi-Threshold SAR Image Segmentation[J]. Radar Science and Technology, 2019, 17(1): 25-32.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 6037次   下载 903次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
蝙蝠优化的二维Tsallis熵多阈值SAR图像分割
张森, 陈继光, 邱丽莉
1.郑州航空工业管理学院计算机学院, 河南郑州450046;2.航空经济发展河南省协同创新中心,河南郑州450046;3.郑州科技学院实践中心, 河南郑州450064
摘要:
针对智能优化SAR图像分割算法存在计算量大、易陷入局部最优、分割精度不够等问题,融合蝙蝠算法和二维Tsallis熵多阈值,提出了一种蝙蝠优化的二维Tsallis熵多阈值SAR图像分割算法。算法利用立方映射均匀化初始蝙蝠种群,引入Levy飞行特征加强算法跳出局部最优能力,使用Powell局部搜索加快算法收敛等3方面改进蝙蝠算法;同时将二维Tsallis熵单阈值分割方法扩展到多阈值分割,建立基于多阈值的选取方法,并结合改进的蝙蝠算法,将二维Tsallis熵多阈值应用于SAR图像分割中。仿真结果表明,与其他智能优化分割算法相比,本分割算法在边缘处理和分割精度上都有明显优势。
关键词:  蝙蝠算法  二维Tsallis熵  多阈值  SAR图像分割  Levy飞行  Powell局部搜索
DOI:DOI: 10.3969/j.issn.1672-2337.2019.01.005
分类号:TN911.73;TP391;TP751
基金项目:国家自然科学基金青年科学基金(No.51705472); 河南省科技攻关计划项目(No.162102210152,172102210529); 河南省教育厅重点研究项目(No.15A520123); 郑州航空工业管理学院青年科研基金(No.2016103001)
Bat Optimized Two-Dimensional Tsallis Entropy Multi-Threshold SAR Image Segmentation
ZHANG Sen, CHEN Jiguang, QIU Lili
1.College of Computer, Zhengzhou University of Aeronautics, Zhengzhou 450046, China;2.Collaborative Innovation Center for Aviation Economy Development, Zhengzhou 450046, China;3.Practice Center, Zhengzhou University of Science and Technology, Zhengzhou 450064, China
Abstract:
For intelligent optimization of SAR image segmentation algorithm, there are some problems, such as large computation, local peak, and insufficient segmentation accuracy. In this paper, a SAR image segmentation algorithm is proposed, which combines bat algorithm and two-dimensional Tsallis entropy multi-threshold. The algorithm homogenizes the initial bat population by using cubic mapping, introduces the Levy flight feature enhancement algorithm to jump out of the local optimum capability, and improves the bat algorithm in three aspects by using Powell local search and accelerating algorithm convergence. The algorithm simultaneously extends the two-dimensional Tsallis entropy single-threshold segmentation method to multi-threshold segmentation and establishes a multi-threshold based selection method. Combined with improved bat algorithm, two-dimensional Tsallis entropy multi-threshold is applied to SAR image segmentation. Simulation results show that the segmentation algorithm has obvious advantages in edge processing and segmentation accuracy compared with other intelligent optimization algorithms.
Key words:  bat algorithm  two-dimensional Tsallis entropy  multiple thresholds  SAR image segment-ation  Levy flight  Powell local search

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司