• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:罗恒, 李增辉,李建勋,李小波. 基于F-CNN的雷达目标辨识算法[J]. 雷达科学与技术, 2019, 17(1): 89-93.[点击复制]
LUO Heng, LI Zenghui,LI Jianxun,LI Xiaobo. A Factorized Convolutional Neural Network Based Algorithm for Radar Target Discrimination[J]. Radar Science and Technology, 2019, 17(1): 89-93.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 6415次   下载 1020次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于F-CNN的雷达目标辨识算法
罗恒, 李增辉,李建勋,李小波
1.国防科技大学电子对抗学院, 安徽合肥230031;2.空军研究院战略预警研究所, 北京100089
摘要:
针对雷达真实目标、地杂波和密集假目标的辨识问题,提出了一种基于分解卷积神经网络的雷达目标辨识算法。以深度可分离卷积为基础建立分解卷积神经网络模型。为了减少模型参数,通过减少卷积核数量和全连接层连接节点数量,减少识别特征种类,建立了精简分解卷积神经网络。实测数据的处理结果表明,该算法与现有卷积神经网络方法相比,精简分解卷积神经网络对真实目标样本、地杂波样本和密集假目标样本具有更高的识别正确率,且精简模型参数数量不到现有方法的十分之一。
关键词:  雷达抗干扰  密集假目标  目标辨识  分解卷积神经网络
DOI:DOI: 10.3969/j.issn.1672-2337.2019.01.016
分类号:TN974
基金项目:
A Factorized Convolutional Neural Network Based Algorithm for Radar Target Discrimination
LUO Heng, LI Zenghui,LI Jianxun,LI Xiaobo
1.School of Electronic Countermeasures, National University of Defense Technology,Hefei 230031, China;2.2.Strategic Early Warning Research Institute, Air Force Academy, Beijing 100089, China
Abstract:
In order to discriminate real targets, clutter, and dense multi-false targets, a factorized convolutional neural network based algorithm for radar target discrimination is proposed. The factorized convolutional neural network model is established based on depthwise separable convolution. To reduce the parameters of the model, the simplified factorized convolutional neural network is set up by reducing the number of convolutional kernel, the connection nodes of fully connected layer, and the categories of discrimination features. The result of the measured data demonstrates that the simplified factorized convolutional neural network has higher discrimination rate for real targets, clutter, and dense multi-false targets compared with the existing model. Its parameters are less than 1/10 of the existing model.
Key words:  radar anti-jamming  dense multi-false targets  target discrimination  factorized convolutional neural network

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司