• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:常沛,夏勇,李玉景,吴涛. 基于CNN的SAR车辆目标检测[J]. 雷达科学与技术, 2019, 17(2): 220-224.[点击复制]
CHANG Pei, XIA Yong, LI Yujing, WU Tao. SAR Vehicle Target Detection Based on CNN[J]. Radar Science and Technology, 2019, 17(2): 220-224.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 7118次   下载 0次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于CNN的SAR车辆目标检测
常沛,夏勇,李玉景,吴涛
1.中国电子科技集团公司第三十八研究所, 安徽合肥230088;2.孔径阵列与空间探测安徽省重点实验室, 安徽合肥230088
摘要:
传统的SAR目标检测算法容易受到复杂背景的干扰,因此利用被广泛应用于图像目标检测和识别领域的Faster-RCNN方法,对复杂背景下的SAR图像进行车辆目标检测实验。在对样本数据进行预处理后对车辆真实位置进行标记,采用可视化的深度学习客户端对样本进行裁剪和旋转,扩充样本数据库。利用已充分训练的模型权重对ZF和VGG-16网络进行预训练,再利用扩充的数据集进行训练和验证,并使用包含MiniSAR数据的测试集进行测试。实验证明,ZF网络和VGG-16的检测效果类似,但是ZF网络因为网络层数更少因而检测耗时更短。
关键词:  合成孔径雷达  卷积神经网络  数据扩充  目标检测和识别
DOI:DOI:10.3969/j.issn.1672-2337.2019.02.016
分类号:TN958;TP753
基金项目:
SAR Vehicle Target Detection Based on CNN
CHANG Pei, XIA Yong, LI Yujing, WU Tao
1.The 38th Research Institute of China Electronics Technology Group Corporation, Hefei 230088, China;2.Key Laboratory of Aperture Array and Space Application, Hefei 230088, China
Abstract:
Traditional SAR target detect algorithm is easily disturbed by complex image scenes, thus Faster-CNN method, which has been widely used in image target detection and recognition field, is applied to accomplish SAR image vehicle target detection in complex background. After pre-processing the sample data, the ground truth location of the vehicle is labeled, and the visual deep-learning client is used to crop and rotate the sample to expand the sample database. The ZF and VGG-16 networks are pre-trained with well-trained model weights, then trained and verified by use of extended datasets, and finally tested with test-sets containing MiniSAR data. Experiments show that the detection effects of ZF network and VGG-16 network are similar, but ZF network takes less time because of the fewer number of network layers.
Key words:  synthetic aperture radar (SAR)  convolutional neural network (CNN)  data augmentation  target detection and recognition

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司