• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:朱晓秀,胡文华,郭宝锋,郭城. 基于快速SBL的双基地ISAR成像[J]. 雷达科学与技术, 2019, 17(3): 289-298.[点击复制]
ZHU Xiaoxiu,HU Wenhua,GUO Baofeng,GUO Cheng. Bistatic ISAR Imaging Based on Fast SBL Algorithm with Sparse Apertures[J]. Radar Science and Technology, 2019, 17(3): 289-298.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 6019次   下载 1011次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于快速SBL的双基地ISAR成像
朱晓秀,胡文华,郭宝锋,郭城
1.陆军工程大学石家庄校区, 河北石家庄 050003;2.中国华阴兵器试验中心, 陕西华阴 714200
摘要:
针对稀疏孔径条件下双基地ISAR成像分辨率低、运算时间长等问题,提出了一种基于快速稀疏贝叶斯学习的高分辨成像算法。首先,建立基于压缩感知的双基地ISAR稀疏孔径回波模型,然后将整个二维回波数据进行分块处理,并假设目标图像各像元服从高斯先验,建立稀疏贝叶斯模型,再利用快速边缘似然函数最大化方法求解得到高质量目标图像,最后将所求的每块回波对应的目标图像合成整个二维图像。由于采取了分块处理,在每块图像重构时减少了数据存储量和计算量。另外,相比于传统的稀疏贝叶斯学习求解方法,本文所提快速算法在保证重构质量的同时进一步缩短了运算时间,仿真实验验证了算法的有效性和优越性。
关键词:  双基地逆合成孔径雷达  稀疏孔径  稀疏贝叶斯学习  快速边缘似然函数最大化
DOI:DOI:10.3969/j.issn.1672-2337.2019.03.009
分类号:TN911.72
基金项目:
Bistatic ISAR Imaging Based on Fast SBL Algorithm with Sparse Apertures
ZHU Xiaoxiu,HU Wenhua,GUO Baofeng,GUO Cheng
1. Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003, China;2.Huayin Ordance Test Centre, Huayin 714200, China
Abstract:
Aiming at solving the problems of energy leakage and low resolution in bistatic inverse synthetic aperture radar(ISAR) imaging with sparse apertures, a high-resolution imaging algorithm based on fast sparse Bayesian learning(SBL) is proposed in this paper. First, the sparse echo model is established based on the compressive sensing theory. Then the whole two-dimensional data is divided into several blocks, and assuming that each pixel of the target image obeys Gaussian prior to establish the SBL model. Then the fast marginal likelihood maximization method is used to reconstruct the target image of each block. Finally, the whole image is synthesized by the target image corresponding to each block echo. Due to the block processing, the data storage and computation are reduced in each block image reconstruction. In addition, compared with the traditional SBL methods, the proposed fast method guarantees the quality of reconstruction while shortening the computation time. The validity and superiority of the algorithm are verified by the simulation experiments.
Key words:  bistatic inverse synthetic aperture radar (ISAR)  sparse apertures  sparse Bayesian learning (SBL)  fast marginal likelihood maximization

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司