• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:王博威,潘宗序,胡玉新,马闻. 少量样本下基于孪生CNN的SAR目标识别[J]. 雷达科学与技术, 2019, 17(6): 603-609.[点击复制]
WANG Bowei,PAN Zongxu,HU Yuxin,MA Wen. SAR Target Recognition Based on Siamese CNN with Small Scale Dataset[J]. Radar Science and Technology, 2019, 17(6): 603-609.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 6680次   下载 1129次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
少量样本下基于孪生CNN的SAR目标识别
王博威,潘宗序,胡玉新,马闻
1.中国科学院大学,北京100049;2.中国科学院电子学研究所,北京100190;3.中国科学院空间信息处理与应用系统技术重点实验室,北京100190
摘要:
针对深度学习中的有监督学习需要大量的标注数据,提出了一种少量训练样本下的SAR目标识别方法,解决了SAR图像人工标注成本较高、标注样本不足的问题。首先通过构建正负样本对的策略对数据集进行样本扩充,大幅增加数据量;其次,设计了一种基于度量学习和深度学习的孪生卷积神经网络(孪生CNN),用于衡量样本之间的相似概率;然后采用多任务联合学习的方法训练模型,有效缓解了相干斑噪声对SAR图像的影响,降低了噪声过多易引起的过拟合风险;最后,设计了一种基于孪生CNN的识别样本具体类别的加权投票模型。实验采用了MSTAR和OpenSARShip数据集,在小规模训练集上通过上述方法取得了较好的识别效果。
关键词:  少量样本  孪生卷积神经网络(孪生CNN)  SAR目标识别  过拟合
DOI:DOI:10.3969/j.issn.1672-2337.2019.06.003
分类号:TN958;TP183
基金项目:国家自然科学基金(No.61701478)
SAR Target Recognition Based on Siamese CNN with Small Scale Dataset
WANG Bowei,PAN Zongxu,HU Yuxin,MA Wen
1.University of Chinese Academy of Sciences,Beijing 100049,China;2.Institute of Electronics,Chinese Academy of Sciences,Beijing 100190,China;3.Key Laboratory of Technology in GeoSpatial Information Processing and Application System,Chinese Academy of Sciences,Beijing 100190,China
Abstract:
In view of the large amount of labeling data required by supervised learning in deep learning,a SAR target recognition method based on small scale training dataset is proposed in this paper,which solves the problems of high cost of manual labeling and insufficient labeling SAR samples in SAR images. Through the strategy of constructing positive and negative sample pairs,the training set is enlarged and the data volume is greatly increased. Secondly,a siamese CNN method combining metric learning and deep CNN is proposed to measure the similarity probability between samples. Then,a multi task joint learning for model training is 〖KG-*4〗adopted to effectively alleviate the problem,which reduces the risk of over fitting caused by excessive noise in SAR images. Finally,a weighted voting model based on siamese CNN is designed to infer specific categories of samples. MSTAR and OpenSARShip datasets are used in the experiment,and good recognition results are obtained through the above methods under small dataset.
Key words:  small scale dataset  siamese CNN  SAR target recognition  over fitting

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司