• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:仓明杰, 喻玲娟, 谢晓春. 基于ICNN和IGAN的SAR目标识别方法[J]. 雷达科学与技术, 2020, 18(3): 287-294.[点击复制]
CANG Mingjie, YU Lingjuan, XIE Xiaochun. SAR Target Recognition Method Based on ICNN and IGAN[J]. Radar Science and Technology, 2020, 18(3): 287-294.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 6451次   下载 994次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于ICNN和IGAN的SAR目标识别方法
仓明杰, 喻玲娟, 谢晓春
1.江西理工大学信息工程学院, 江西赣州341000;2.赣南师范大学物理与电子信息学院, 江西赣州341000
摘要:
近年来,卷积神经网络(CNN)已广泛应用于合成孔径雷达(SAR)目标识别。由于SAR目标的训练数据集通常较小,基于CNN的SAR图像目标识别容易产生过拟合问题。生成对抗网络(GAN)是一种无监督训练网络,通过生成器和鉴别器两者之间的博弈,使生成的图像难以被鉴别器鉴别出真假。本文提出一种基于改进的卷积神经网络(ICNN)和改进的生成对抗网络(IGAN)的SAR目标识别方法,即先用训练样本对IGAN进行无监督预训练,再用训练好的IGAN鉴别器参数初始化ICNN,然后用训练样本对ICNN微调,最后用训练好的ICNN对测试样本进行分类。MSTAR实验结果表明,提出的方法不仅能够在训练样本数降至原样本数30%的情况下获得高达96.37%的识别率,而且该方法比直接采用ICNN的方法具有更强的抗噪声能力。
关键词:  卷积神经网络  生成对抗网络  合成孔径雷达  目标识别
DOI:DOI:10.3969/j.issn.1672-2337.2020.03.009
分类号:TN957.5
基金项目:国家自然科学基金(No.61501210); 江西省自然科学基金(No.20161BAB202054); 江西省教育厅科技项目(No.GJJ170825)
SAR Target Recognition Method Based on ICNN and IGAN
CANG Mingjie, YU Lingjuan, XIE Xiaochun
1. School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;2. School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China
Abstract:
In recent years, convolutional neural network (CNN) has been widely used in synthetic aperture radar (SAR) target recognition. Due to the small training dataset of SAR target, CNN-based SAR target recognition is prone to produce over-fitting. Generative adversarial network (GAN) is an unsupervised training network, where the game between generator and discriminator makes it difficult for the discriminator to identify the authenticity of the generated image. A method based on the improved convolutional neural network (ICNN) and the improved generative adversarial network (IGAN) is proposed in this paper for SAR target recognition. Firstly, IGAN is performed the unsupervised pre-training by training samples, and then ICNN is initialized according to the trained discriminator parameters of IGAN. After that, training samples are utilized to finely tune ICNN. Finally, the trained ICNN is used to classify the testing samples. MSTAR experimental results show that the proposed method can obtain a recognition rate up to 96.37% even when the number of training samples is reduced to 30%, and this method has stronger anti-noise capability than the method using ICNN directly.
Key words:  convolutional neural network  generative adversarial network  synthetic aperture radar  target recognition

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司