• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:彭 威, 林 强. 基于PSO-SVM算法的雷达点迹真伪鉴别方法研究[J]. 雷达科学与技术, 2020, 18(4): 429-432.[点击复制]
PENG Wei, LIN Qiang. An Identification Method of True and False Plots Based on PSO-SVM Algorithm[J]. Radar Science and Technology, 2020, 18(4): 429-432.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 6002次   下载 1283次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于PSO-SVM算法的雷达点迹真伪鉴别方法研究
彭 威, 林 强
空军预警学院, 湖北武汉430019
摘要:
为解决虚假目标点迹对雷达跟踪性能的影响,本文提出了一种基于PSO-SVM算法的雷达点迹真伪鉴别方法,进一步对目标点迹和杂波点迹进行真伪鉴别,有助于滤除杂波剩余点迹,提高雷达处理容量和跟踪性能。本方法利用点迹形成过程中生成的特征参数,先利用PSO算法对SVM算法参数进行优化选择,再利用参数优化后的SVM算法对雷达点迹进行真伪鉴别。最终,目标点迹鉴别准确率达到了95.18%,杂波点迹鉴别准确率达到了89.94%,整体的点迹鉴别准确率达到了92.13%。实验结果表明:该算法有较高、较稳定的点迹鉴别准确率,前期较多的杂波点迹被鉴别为目标点迹的缺陷也得到了较好的改善。
关键词:  剩余杂波  支持向量机  粒子群算法  点迹鉴别
DOI:DOI:10.3969/j.issn.1672-2337.2020.04.012
分类号:TN957
基金项目:
An Identification Method of True and False Plots Based on PSO-SVM Algorithm
PENG Wei, LIN Qiang
Air Force Early Warning Academy, Wuhan 430019, China
Abstract:
In order to remove the influence of false target plot on radar tracking performance, this paper proposes an identification method of true and false plots based on PSO-SVM algorithm. With this method, further identifications of the true and false plots and clutter plots are helpful to filter residual clutter plot and improve radar processing capacity and tracking performance. This method uses the characteristic parameters gene-rated in the process of plot formation. First, the PSO algorithm is used to optimize the parameters of SVM algorithm. Then, the optimized SVM algorithm is used to identify the true or false plots. Finally, the accuracy rate of target plot and clutter plot identification can reach up to 95.18% and 89.94% respectively.The overall accuracy rate of plot identification can reach 92.13%. The experimental results show that the algorithm has a higher and more stable accuracy rate of plot identification and the early defect of clutter plots being identified as target plots has also been improved.
Key words:  residual clutter  support vector machine(SVM)  particle swarm optimization(PSO)  plot identification

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司