• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:王晓明, 杨鹏程, 邱 炜. 基于稀疏重构的机载雷达KA-STAP杂波抑制算法[J]. 雷达科学与技术, 2020, 18(5): 546-550.[点击复制]
WANG Xiaoming, YANG Pengcheng, QIU Wei. A KA-STAP Algorithm Based on Sparse Recovery for Airborne Radar Clutter Suppression[J]. Radar Science and Technology, 2020, 18(5): 546-550.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5914次   下载 1291次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于稀疏重构的机载雷达KA-STAP杂波抑制算法
王晓明, 杨鹏程, 邱 炜
1. 中国电子科技集团公司第三十八研究所, 安徽合肥230088;2. 孔径阵列与空间探测安徽省重点实验室, 安徽合肥 230088
摘要:
机载雷达非均匀杂波环境下的空时自适应处理(STAP)算法会因杂波协方差矩阵估计不准导致其杂波抑制性能下降。传统知识辅助 STAP (KA-STAP)算法性能依赖于先验知识的准确程度以及配准精度,先验信息的失配可能会导致算法性能恶化。本文提出一种基于稀疏恢复技术构造杂波加噪声协方差矩阵的KA-STAP算法。该算法不依赖于先验信息,首先利用稀疏贝叶斯学习技术通过少量回波样本估计出稳健的辅助协方差矩阵,然后结合采样协方差矩阵进行空时处理。在小样本非均匀杂波场景下,该算法的输出性能优于传统KA-STAP算法。仿真结果表明了本文方法的有效性。
关键词:  空时自适应处理  稀疏贝叶斯学习  协方差矩阵估计  杂波抑制
DOI:DOI:10.3969/j.issn.1672-2337.2020.05.013
分类号:TN957.52
基金项目:国家科技重大专项(No.2017ZX01013201-006); 十三五装备预研基金(No.61404130110)
A KA-STAP Algorithm Based on Sparse Recovery for Airborne Radar Clutter Suppression
WANG Xiaoming, YANG Pengcheng, QIU Wei
1. The 38th Research Institute of China Electronics Technology Group Corporation, Hefei 230088, China;2. Key Laboratory of Aperture Array and Space Application, Hefei 230088, China
Abstract:
The clutter suppression effectiveness of space-time adaptive processing(STAP) in a heterogeneous clutter environment of airborne radar will be reduced due to the inaccurate estimation of the clutter covariance matrix. The performance of traditional knowledge-aided STAP (KA-STAP) algorithm depends on the accuracy and the matching precision of prior knowledge, therefore the mismatch of prior information can degrade the system performance. To mitigate this weakness, this paper proposes a STAP algorithm to reconstruct the covariance matrix by leveraging sparse recovery technique.Without prior information,this study uses a small amount of secondary data samples to estimate a robust auxiliary clutter and noise covariance matrix based on sparse Bayesian learning technique. The STAP result can be achieved by combining the sampling covariance matrix and the auxiliary covariance matrix. The performance of this method is better than that of traditional KA-STAP algorithm in a heterogeneous clutter environment with limited samples. Simulation results demonstrate the validity of the proposed method.
Key words:  space-time adaptive processing(STAP)  sparse Bayesian learning  covariance matrix estimation  clutter suppression

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司