• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:张云,穆慧琳,姜义成,丁畅. 基于深度学习的雷达成像技术研究进展[J]. 雷达科学与技术, 2021, 19(5): 467-478.[点击复制]
ZHANG Yun, MU Huilin, JIANG Yicheng, DING Chang. Overview of Radar Imaging Techniques Based on Deep Learning[J]. Radar Science and Technology, 2021, 19(5): 467-478.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 7536次   下载 922次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于深度学习的雷达成像技术研究进展
张云,穆慧琳,姜义成,丁畅
哈尔滨工业大学电子与信息工程学院,黑龙江哈尔滨150000
摘要:
成像雷达具有全天时、全天候、远距离、高分辨对地观测的能力,使得雷达系统具有对观测区域进行成像和解译的能力。利用先进信号处理技术实现实时高分辨成像以满足图像解译的需求是雷达成像技术研究的重要目的和意义。随着深度学习的迅速兴起,深度学习网络在逆问题求解中得到广泛应用,也为提升成像质量和成像效率提供新的求解思路。本文基于雷达成像数学模型将雷达成像问题建模为成像逆问题,从逆问题求解的角度分析了基于深度学习的雷达成像方法的可行性。并综述了近年来雷达深度学习技术在合成孔径雷达(Synthetic Aperture Radar,SAR)、逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)、SAR运动目标成像等雷达成像领域的研究现状,在此基础上探讨了目前面临的亟待解决的问题,并对未来发展方向进行了展望。
关键词:  深度学习  雷达成像  逆问题  卷积神经网络  复数域卷积神经网络
DOI:DOI:10.3969/j.issn.1672-2337.2021.05.001
分类号:TN958.3
基金项目:国家自然科学基金面上项目(No.61971163)
Overview of Radar Imaging Techniques Based on Deep Learning
ZHANG Yun, MU Huilin, JIANG Yicheng, DING Chang
School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150000, China
Abstract:
The imaging radar has advantages of all-day, all-weather, long-distance, and high-resolution imaging for the observation scene, which makes it capable of imaging and interpreting the observation scene. The important purpose and significance of the radar imaging technology research is to utilize the advanced signal processing technology to achieve real-time high-resolution imaging for the requirement of image interpretation. With the rapid development of deep learning, deep learning networks have been widely used for inverse problems. And they also provide new solutions for improving imaging quality and efficiency. In this paper, the radar imaging problem is modeled as an inverse imaging problem based on the radar imaging mathematical model. Then the feasibility of the radar imaging method based on deep learning is analyzed from the perspective of solving the inverse problem. Moreover, the state-of-the-art radar deep learning technologies are reviewed in the field of synthetic aperture radar (SAR), inverse synthetic aperture radar (ISAR), and SAR moving target imaging in recent years. The future perspectives are finally discussed according to the existed challenges.
Key words:  deep learning  radar imaging  inverse problem  convolutional neural network  complex-valued convolutional neural network

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司