• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:东松林,岳显昌,吴雄斌,高玉斌. 基于深度学习的高频雷达射频干扰自动识别与抑制[J]. 雷达科学与技术, 2022, 20(3): 260-271.[点击复制]
DONG Songlin, YUE Xianchang, WU Xiongbin, GAO Yubin. Automatic Identification and Suppression of Radio Frequency Interference of HF Radar Based on Deep Learning[J]. Radar Science and Technology, 2022, 20(3): 260-271.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5881次   下载 1184次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于深度学习的高频雷达射频干扰自动识别与抑制
东松林,岳显昌,吴雄斌,高玉斌
武汉大学电子信息学院, 湖北武汉 430072
摘要:
高频地波雷达的探测性能极易受到射频干扰的影响,当前射频干扰抑制的研究主要是通过人工识别来逐一处理,鲜见实时自动识别与抑制射频干扰的研究。随着深度学习在雷达图像处理方面应用的展开,本文尝试将其引入高频雷达射频干扰抑制中,利用YOLO (You Only Look Once)模型来识别雷达距离多普勒谱图中的射频干扰,继而用高阶奇异值分解(Higher Order Singular Value Decomposition, HOSVD)方法对其进行抑制。仿真和实测数据处理结果表明,此YOLO-HOSVD联合算法实现了对高频雷达射频干扰的自动识别与抑制,单场数据处理时间不超过1.8 s。该方法可以应用于高频地波雷达常规海态观测。
关键词:  高频地波雷达  射频干扰抑制  YOLO  高阶奇异值分解  深度学习
DOI:DOI:10.3969/j.issn.1672-2337.2022.03.004
分类号:TN972
基金项目:广东省重点领域研发计划(No.2020B1111020005); 湖北省重点研发计划项目(No.2020BCA080); 科技部重点研发计划(No.2016YFC1401101)
Automatic Identification and Suppression of Radio Frequency Interference of HF Radar Based on Deep Learning
DONG Songlin, YUE Xianchang, WU Xiongbin, GAO Yubin
School of Electronic Information, Wuhan University, Wuhan 430072, China
Abstract:
The detection performance of high frequency surface wave radar (HFSWR) is extremely susceptible to radio frequency interference (RFI). Currently, the suppression of RFI in HFSWR echoes is conducted frame by frame through manual identification, and there are few researches on automatic identification and suppression of RFI. With the development of deep learning in radar image processing, this article tries to introduce it into high frequency radar RFI suppression, and uses the YOLO (you only look once) model to identify the RFI in the radar range Doppler spectrum, and then suppressed by the higher order singular value decomposition (HOSVD) method. The results of simulation and experiment show that the YOLO-HOSVD joint algorithm can realize the automatic identification and suppression of RFI in HFSWR echoes, and the processing time of a single field data does not exceed 1.8 s. This method is applicable to the operational HFSWR to automatically identify and suppress the RFI in observing sea state.
Key words:  HFSWR  RFI suppression  YOLO  HOSVD  deep learning

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司