• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:齐美彬, 程佩琳, 靳学明, 张什永, 项厚宏. 基于密集连接卷积网络的雷达辐射源信号分选[J]. 雷达科学与技术, 2022, 20(6): 635-642.[点击复制]
QI Meibin, CHENG Peilin, JIN Xueming, ZHANG Shiyong, XIANG Houhong. Radar Emitter Signal Sorting Based on Densely Connected Convolutional Networks[J]. Radar Science and Technology, 2022, 20(6): 635-642.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5569次   下载 745次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于密集连接卷积网络的雷达辐射源信号分选
齐美彬, 程佩琳, 靳学明, 张什永, 项厚宏
1. 合肥工业大学计算机与信息学院, 安徽合肥 230009;2. 中国电子科技集团公司第三十八研究所, 安徽合肥 230088
摘要:
针对现代战场电磁环境下复杂调制雷达信号分选准确率低的问题,本文提出一种基于密集连接卷积网络(Densely Connected Convolutional Networks, DenseNet)的雷达辐射源信号分选算法。该算法采用脉冲描述字(Pulse Description Word, PDW)参数与脉内参数相结合作为分选特征,并对特征参数进行差值预处理生成训练数据,使用一维DenseNet网络进行分选。采用本文预处理方法可以有效提取特征间的相关性差异,同时弥补脉间参数PDW对脉内调制信息的缺失。实验结果表明,该方法能有效实现复杂雷达辐射源信号的分选,在0 dB的信噪比下可以达到98%以上的分选准确率。
关键词:  雷达信号分选  脉间特征  脉内特征  密集神经网络
DOI:DOI:10.3969/j.issn.1672-2337.2022.06.006
分类号:TN971
基金项目:
Radar Emitter Signal Sorting Based on Densely Connected Convolutional Networks
QI Meibin, CHENG Peilin, JIN Xueming, ZHANG Shiyong, XIANG Houhong
1. School of Computer and Information Engineering, Hefei University of Technology, Hefei 230009, China;2. The 38th Research Institute of China Electronics Technology Group Corporation, Hefei 230088, China
Abstract:
To address the problem of low accuracy in complex modulated radar signal sorting in modern battlefield electromagnetic environments, this paper proposes a radar emitter signal sorting algorithm based on densely connected convolutional networks (DenseNet). The algorithm uses the combination of pulse description word (PDW) parameters and intra-pulse parameters as the sorting features, preprocesses the feature parameters to generate training data, and uses one-dimensional DenseNet for sorting. The proposed preprocessing method can extract correlation differences between features and compensate for the lack of intra-pulse modulation information caused by the inter-pulse parameter PDW. The experimental results show that this method can effectively realize the sorting of complex radar emitter signals, and the sorting accuracy can reach more than 98% under the signal-to-noise ratio of 0 dB.
Key words:  radar signal sorting  inter-pulse feature  intra-pulse feature  DenseNet

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司