• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:董云龙, 张兆祥, 刘宁波, 黄 勇, 丁 昊, 张梦雨. 雷达回波三特征联合海况分类方法[J]. 雷达科学与技术, 2023, 21(2): 189-198.[点击复制]
DONG Yunlong, ZHANG Zhaoxiang, LIU Ningbo, HUANG Yong, DING Hao, ZHANG Mengyu. Sea State Classification Method Based on Three Features of Radar Echo[J]. Radar Science and Technology, 2023, 21(2): 189-198.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5203次   下载 681次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
雷达回波三特征联合海况分类方法
董云龙, 张兆祥, 刘宁波, 黄 勇, 丁 昊, 张梦雨
1. 海军航空大学信息融合研究所, 山东烟台 264001;2. 烟台大学, 山东烟台 264001
摘要:
海况作为雷达对海上目标探测的重要背景信息,对其灵活、快速和准确判断在对海探测雷达的目标精细化探测中具有重要作用。为此,本文提出了海杂波时频谱的均值函数脊累积量、标准差函数脊累积量、多普勒谱的区域峰值功率与噪声均值功率比三种差异性特征来区分高/低海况,并利用支持向量机(SVM)构造了三特征联合的高/低海况分类器,最后使用海军航空大学“雷达对海探测数据共享计划”数据集对所提分类器进行测试,结果表明所提方法在使用64个相参脉冲的条件下,即可实现对高/低海况的准确分类,能够满足对海探测雷达工作于扫描模式的需求。
关键词:  对海雷达  海况分类  时频域特征  频域特征  支持向量机
DOI:DOI:10.3969/j.issn.1672-2337.2023.02.010
分类号:TN959.72
基金项目:国家自然科学基金(No.61871392, 62101583, 61871391); 山东省自然科学基金(No.ZR2021YQ43)
Sea State Classification Method Based on Three Features of Radar Echo
DONG Yunlong, ZHANG Zhaoxiang, LIU Ningbo, HUANG Yong, DING Hao, ZHANG Mengyu
1. Institute of Information Fusion, Naval Aviation University, Yantai 264001, China;2. Yantai University,Yantai 264001, China
Abstract:
As an important background information for radar to detect floating targets on the sea, the flexible, fast and accurate judgment of sea state plays an important role in the target fine detection of sea detection radar. Therefore, this paper proposes three different features of the ridge integration of the mean function of the time?frequency spectrum, ridge integration of the standard deviation function and the ratio of regional peak power to noise mean power of Doppler power spectrum to distinguish high/low sea states, and designs a three?features combined high/low sea state classifier by using support vector machine (SVM). Finally, the proposed classifier is tested with the data set of “Radar?to?Sea Exploration Data Sharing Program” of Naval Aviation University. The results show that the proposed method can accurately classify the high/low sea state under the condition of using 64 coherent pulses, and can meet the requirements of general sea detection radar working in scanning mode.
Key words:  sea radar  classification of sea state  time⁃frequency domain features  frequency domain features  support vector machine

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司