• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:曾祥书, 黄一飞, 蒋忠进. 基于YOLOX网络的SAR图像舰船目标检测[J]. 雷达科学与技术, 2023, 21(3): 255-263.[点击复制]
ZENG Xiangshu, HUANG Yifei, JIANG Zhongjin. Ship Target Detection in SAR Images Based on YOLOX[J]. Radar Science and Technology, 2023, 21(3): 255-263.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5183次   下载 611次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于YOLOX网络的SAR图像舰船目标检测
曾祥书, 黄一飞, 蒋忠进
东南大学毫米波国家重点实验室, 江苏南京 210096
摘要:
针对SAR图像舰船目标尺寸大小不一、舰船分布密集、背景复杂等问题,本文提出一种改进YOLOX网络并用于SAR图像舰船目标检测。该网络包括主干特征提取网络、加强特征提取网络、解耦头、预测框优化及损失计算等4个部分。与常规YOLOX网络相比,本文作了如下改进:首先,在主干特征提取网络中,3个基础特征层之后都添加了CA模块;在加强特征提取网络中,两处下采样之后也都添加了CA模块。以强化对SAR图像中重要区域的特征提取。其次,在框回归损失函数中,引入CIOU替代IOU,以更好地利用预测框和真实框之间的相对位置信息和形状信息,提升预测框回归精度。本文基于AIR?SARSHIP?2.0数据集进行了大量的舰船目标检测实验,并选择了Faster?RCNN、YOLOv3和常规YOLOX等3种网络与本文的改进YOLOX网络进行对比。实验结果表明,本文的改进YOLOX网络整体性能优于其他3种对比网络,有更少的虚警和漏警、更高的检测精度。
关键词:  深度学习  YOLOX  SAR图像  舰船目标检测
DOI:DOI:10.3969/j.issn.1672-2337.2023.03.003
分类号:TN957.51
基金项目:国家自然科学基金(No.61890544)
Ship Target Detection in SAR Images Based on YOLOX
ZENG Xiangshu, HUANG Yifei, JIANG Zhongjin
State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
Abstract:
According to the problems of different sizes of ship targets, dense distribution of ships and complex background in SAR images, this paper proposes an improved YOLOX network for ship target detection in SAR images. The network includes four parts: backbone feature extraction network, enhanced feature extraction network, decoupled head, prediction frame optimization and loss calculation. Compared with the conventional YOLOX, the improved YOLOX has following modifications: First, in the backbone feature extraction network, three CA modules are respectively added after the three basic feature layers; In the enhanced feature extraction network, each of the two down?sampling modules is added with a CA module to enhance the feature extraction of important regions in SAR images. Second, in the box regression loss function, CIOU is introduced to replace IOU to make better use of shape information and relative position information between the predicted box and the real box, and improve the accuracy of the predicted box regression. Based on the AIR?SARSHIP?2.0, a large number of ship target detection experiments are finished, and three networks ? Faster?RCNN, YOLOv3 and conventional YOLOX are selected, to compare with the improved YOLOX. The experimental results show that the overall performance of the improved YOLOX network in this paper is better than the other three compared networks, which not only has less false alarms and missed alarms, but also has higher detection accuracy.
Key words:  deep learning  YOLOX  SAR images  ship target detection

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司