• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:罗泽虎, 王旭东, 徐桂光, 高涌荇. 卷积神经网络联合SVM的降水粒子分类[J]. 雷达科学与技术, 2023, 21(4): 391-399.[点击复制]
LUO Zehu, WANG Xudong, XU Guiguang, GAO Yongxing. Hydrometeor Classification Based on Convolutional Neural Network Combined with SVM[J]. Radar Science and Technology, 2023, 21(4): 391-399.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4965次   下载 757次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
卷积神经网络联合SVM的降水粒子分类
罗泽虎, 王旭东, 徐桂光, 高涌荇
南京航空航天大学雷达成像与微波光子技术教育部重点实验室, 江苏南京 211106
摘要:
针对传统模糊逻辑降水粒子识别算法存在过度依赖专家经验来设置参数的缺陷,提出一种基于卷积神经网络(Convolutional Neural Network, CNN)和支持向量机(Support Vector Machine, SVM)联合结构的降水粒子分类方法。本文首先搭建了适用于双偏振雷达数据矩阵传播结构的4种卷积神经网络模型,通过对KOHX雷达各极化参数进行分块和堆叠操作,制作模型所需数据集并训练模型。然后根据各CNN模型对目标块的分类特点,结合SVM分类器,搭建能够识别5类目标粒子的联合结构。最后,对KOHX雷达0.5°仰角扫描数据进行测试,得到该联合结构模型的分类准确率达94.92%。并且对于不同仰角、不同雷达的扫描数据均能进行有效分类,表现出较好的鲁棒性。
关键词:  模糊逻辑  卷积神经网络  极化参数  支持向量机  降水粒子分类
DOI:DOI:10.3969/j.issn.1672-2337.2023.04.005
分类号:TN959.4
基金项目:工信部民机专项(No.MJ?2018?S?28)
Hydrometeor Classification Based on Convolutional Neural Network Combined with SVM
LUO Zehu, WANG Xudong, XU Guiguang, GAO Yongxing
Key Laboratory of Radar Imaging and Microwave Photonics of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)
Abstract:
Aiming at the defect of traditional fuzzy logic hydrometeor classification algorithm that excessively relies on expert experience to set parameters, a hydrometeor classification method based on convolutional neural network (CNN) combined with support vector machine (SVM) is proposed. Firstly, we build four convolutional neural network models applicable to the propagation structure of dual polarization radar data matrix, and the dataset required by the model is made through blocking and stacking the polarization parameters of KOHX radar. Then we train the model. According to the classification characteristics of each CNN model on the target block and combining with the SVM classifier, a joint model that can recognize five types of target hydrometeors is built. Finally, the 0.5° elevation scanning data of KOHX radar are tested, and the classification accuracy of the joint model is 94.92%. It can effectively classify the scanning data of different elevations and different radars, which shows good robustness.
Key words:  fuzzy logic  convolutional neural network (CNN)  polarization parameter  support vector machine (SVM)  hydrometeor classification

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司