• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:齐美彬, 李亚斌, 项厚宏, 杨艳芳, 张学森. 基于自注意力机制的雷达弱目标检测[J]. 雷达科学与技术, 2023, 21(4): 431-439.[点击复制]
QI Meibin, LI Yabin, XIANG Houhong, YANG Yanfang, ZHANG Xuesen. Weak Radar Target Detection Based on Self⁃Attention Mechanism[J]. Radar Science and Technology, 2023, 21(4): 431-439.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5316次   下载 826次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于自注意力机制的雷达弱目标检测
齐美彬, 李亚斌, 项厚宏, 杨艳芳, 张学森
1. 合肥工业大学计算机与信息工程学院, 安徽合肥 230009;2. 中国电子科技集团公司第三十八研究所, 安徽合肥 230088
摘要:
对于低信噪比下的弱小目标检测,传统的检测算法采用恒虚警(CFAR)的方式定位目标的位置,但其难以设置合适的阈值,无法很好地应对该类目标的检测。针对上述问题,本文提出VU?Net检测方法。该方法首先对雷达回波数据进行处理,得到目标回波的距离?多普勒(RD)矩阵。然后将RD矩阵输入到所提出的网络框架,通过U?Net实现雷达信号的编码与解码,获取RD矩阵中具有辨别性的深度语义特征,实现逐单元的目标位置预测。同时,该网络中引入自注意力模块实现对雷达信号的关系建模,从而提取更加丰富的目标回波特征,提升网络的抗噪性能。实验结果表明,所提方法的检测性能在低信噪比场景下具有较强的鲁棒性,能够实现对弱目标的有效检测。
关键词:  弱目标检测  深度学习  自注意力机制  深度语义特征
DOI:DOI:10.3969/j.issn.1672-2337.2023.04.010
分类号:TN971
基金项目:
Weak Radar Target Detection Based on Self⁃Attention Mechanism
QI Meibin, LI Yabin, XIANG Houhong, YANG Yanfang, ZHANG Xuesen
1. School of Computer and Information Engineering, Hefei University of Technology, Hefei 230009, China;2. The 38th Research Institute of China Electronics Technology Group Corporation, Hefei 230088, China
Abstract:
For dim target detection under low signal?to?noise ratio, the traditional detection algorithm uses constant false alarm rate (CFAR) to locate the target, but it is difficult to set an appropriate threshold, which cannot well deal with the detection of this kind of targets. Aiming at the above problems, this paper proposes VU?NET detection method. Firstly, the radar echo data is processed to obtain the range?Doppler (RD) matrix of the target echo. Then the RD matrix is input to the proposed network framework, and the radar signal is encoded and decoded by U?Net to obtain the discriminative deep semantic features in the RD matrix, while the target position prediction is realized unit by unit. At the same time, the self?attention module is introduced into the network to achieve the relationship modeling of radar signals, so as to extract richer target echo features and improve the anti?noise performance of the network. Experimental results show that the detection performance of the proposed method is robust in low SNR scenarios, and it can effectively detect weak targets.
Key words:  weak target detection  deep learning  self⁃attention mechanism  deep semantic feature

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司