• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:孙延鹏, 李思锐, 屈乐乐. 基于多域特征融合的旋翼无人机分类识别[J]. 雷达科学与技术, 2023, 21(4): 447-453.[点击复制]
SUN Yanpeng, LI Sirui, QU Lele. Rotorcraft UAV Classification and Recognition Based on Multi⁃Domain Feature Fusion[J]. Radar Science and Technology, 2023, 21(4): 447-453.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5152次   下载 832次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于多域特征融合的旋翼无人机分类识别
孙延鹏, 李思锐, 屈乐乐
沈阳航空航天大学电子信息工程学院, 辽宁沈阳 110136
摘要:
为提高雷达旋翼无人机的识别效果,本文提出一种基于多域特征融合的旋翼无人机分类方法。首先利用K波段连续波(Continuous Wave,CW)雷达观测多旋翼无人机,对采集到的雷达回波信号进行信号处理依次得到时频图、节奏速度图(Cadence?Velocity Diagram, CVD)和节奏频谱图(Cadence Frequency Spectrum,CFS),然后将时频图和CVD图分别输入SqueezeNet网络,CFS数据输入一维卷积神经网络(1?D?CNN)提取回波信号在时频域、节奏速度域和节奏频率域的特征,最后将特征融合输入支持向量机(Support Vector Machine, SVM)进行分类。实测雷达数据处理的结果表明基于多域特征融合的旋翼无人机分类识别方法对三类旋翼无人机的分类准确率达到99.14%。
关键词:  旋翼无人机分类  多域特征融合  SqueezeNet网络  支持向量机
DOI:DOI:10.3969/j.issn.1672-2337.2023.04.012
分类号:TN957.5
基金项目:国家自然科学基金(No.61671310);航空科学基金(No.2019ZC054004);辽宁省兴辽英才计划项目基金(No.XLYC1907134);辽宁省百千万人才工程项目基金(No.2018B21)
Rotorcraft UAV Classification and Recognition Based on Multi⁃Domain Feature Fusion
SUN Yanpeng, LI Sirui, QU Lele
College of Electronic Information Engineering, Shenyang Aerospace University, Shenyang 110136, China
Abstract:
In order to improve the recognition effect of rotorcraft UAV based on radar, this paper proposes a rotorcraft UAV classification method based on multi?domain feature fusion. Firstly, the K?band continuous wave (CW) radar is used to observe the multi?rotor UAV. The collected radar echo signals are processed to obtain the time?frequency diagram, cadence?velocity diagram (CVD) and cadence?frequency spectrum (CFS) successively. Then the time?frequency map and CVD are respectively input into SqueezeNet network, and the CFS data are input into one?dimensional convolutional neural network (1?D?CNN) to extract the features of echo signal in time?frequency domain, rhythm?velocity domain and rhythm?frequency domain. Finally, the features are fused into support vector machine (SVM) for classification. The results of radar data processing show that the classification accuracy of three types of rotorcraft UAV based on multi?domain feature fusion is 99.14%.
Key words:  rotorcraft UAV classification  multi⁃domain feature fusion  SqueezeNet network  support vector machine

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司