• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:盛 琥, 汪海兵. 基于BLUE的雷达/红外异步融合算法研究[J]. 雷达科学与技术, 2023, 21(5): 575-580.[点击复制]
SHENG Hu, WANG Haibing. Asynchronous Fusion Algorithm Research Based on BLUE for Netted System of Radar/IR Sensors[J]. Radar Science and Technology, 2023, 21(5): 575-580.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4949次   下载 460次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于BLUE的雷达/红外异步融合算法研究
盛 琥, 汪海兵
1. 中国电子科技集团公司第三十八研究所, 安徽合肥 230088;2. 国防科技大学电子对抗学院, 安徽合肥 230037
摘要:
多传感器融合是提高态势感知能力的重要手段。为提高探测能力,将雷达和红外传感器组网,各传感器独立工作,在统一调度下,完成探测、跟踪、识别任务。研究该系统的雷达/红外数据融合算法,针对传感器异步探测特点,采用观测驱动的融合跟踪方法:雷达探测到目标时,采用基于状态预测的改进BLUE(Best Linear Unbiased Estimation)滤波,通过方位预测的辅助,减小测角误差非线性效应,提高跟踪性能;红外探测到目标时,基于方位预测和斜距观测,构造新的转换量测模型,实现基于不完备观测的修正BLUE滤波器。理论分析和仿真证明:所述雷达/红外数据融合方法,在不同传感器布局下都具备更优的综合性能,其设计思想可解决其他类似的多传感器融合问题,有较好的应用推广潜力。
关键词:  多传感器数据融合  非线性滤波  最佳线性无偏估计  卡尔曼滤波
DOI:DOI:10.3969/j.issn.1672-2337.2023.05.015
分类号:TN953
基金项目:安徽省自然科学基金(No.1708085MF153)
Asynchronous Fusion Algorithm Research Based on BLUE for Netted System of Radar/IR Sensors
SHENG Hu, WANG Haibing
1. The 38th Research Institute of China Electronics Technology Group Corporation, Hefei 230088, China;2. College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China
Abstract:
Multi?sensor fusion plays an important role in situation awareness improvement. To improve detection ability, a radar/infrared netted system is proposed. All sensors work independently, and accomplish detection, tracking, and recognition tasks under unified schedule. For radar target tracking, an improved BLUE (Best Linear Unbiased Estimation) filter is presented, which enhances tracking ability by decreasing azimuth estimation error. For infrared target tracking, a modified BLUE filter is presented, which solves the bearing?only target tracking problem. Theoretic analysis and numeric results verify that the proposed approach exhibits improved tracking performance and computational advantage over others in different sensor geometries. The architecture design can be used to solve other multi?sensor fusion problems, so this scheme is worth further development and promotion.
Key words:  multi⁃sensor data fusion  nonlinear filtering  best linear unbiased estimation  Kalman filter

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司