• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:李兴宇,董胜波,于沐尧. 基于动态权重的知识积累与灵巧干扰识别方法[J]. 雷达科学与技术, 2023, 21(6): 645-652.[点击复制]
LI Xingyu, DONG Shengbo, YU Muyao. A Knowledge Accumulation and Smart Jamming Recognition Method Based on Dynamic Weights[J]. Radar Science and Technology, 2023, 21(6): 645-652.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4716次   下载 595次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于动态权重的知识积累与灵巧干扰识别方法
李兴宇,董胜波,于沐尧
北京遥感设备研究所, 北京 100854
摘要:
针对低干噪比条件下灵巧干扰识别准确率不高与干扰特征难以积累导致的网络需要重新训练问题,本文将信号的平滑伪Wigner?Ville分布的时频二维图像作为输入,提出了一种基于动态权重的知识积累(Dynamic Weighted Knowledge Accumulation method based on Convolutional Neural Network, DWKA?CNN)灵巧干扰识别方法,利用通道特征注意力机制,提升了低干噪比下模型的干扰识别能力,通过均值最近邻分层屏蔽网络权重,实现了在单一网络中的知识积累,与当前典型基于深度学习的灵巧干扰识别方法相比,无需每次重新训练即可学习多项干扰识别任务。并且仿真实验表明,与现有典型算法相比,该算法模型在7种雷达灵巧干扰分类数据集上的平均识别准确率显著提升,在低干噪比条件下分类性能优秀。
关键词:  深度学习  干扰识别  时频图像  动态权重  知识积累
DOI:DOI:10.3969/j.issn.1672-2337.2023.06.008
分类号:TN974
基金项目:
A Knowledge Accumulation and Smart Jamming Recognition Method Based on Dynamic Weights
LI Xingyu, DONG Shengbo, YU Muyao
Beijing Institute of Remote Sensing Equipment, Beijing 100854, China
Abstract:
Aiming at the problem of low accuracy of smart jamming recognition under low JNR and the need to retrain the network due to the difficulty of accumulating interference features, this paper takes the time?frequency two?dimensional image of the smooth pseudo Wigner?Ville distribution of the signal as the input, and proposes a dynamic weighted knowledge accumulation method based on convolutional neural network(DWKA?CNN). The method uses the channel feature attention mechanism to improve the jamming recognition ability of the model under low JNR, and achieves knowledge accumulation in a single network by shielding the network weights through mean?nearest?neighbor hierarchy, which allows learning multiple jamming recognition tasks without retraining each time, compared with the current typical deep?learning?based dexterous jamming recognition methods. Simulation experiments show that, compared with the existing typical algorithms, the algorithm model significantly improves the average recognition accuracy on seven radar smart jamming classification datasets, and the classification performance is excellent under low JNR conditions.
Key words:  deep learning  jamming recognition  time⁃frequency image  dynamic weights  knowledge accumulation

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司