引用本文: | 王艺卉,闫文君,段可欣,于楷泽. 基于数据增强的小样本辐射源个体识别方法[J]. 雷达科学与技术, 2024, 22(1): 104-110.[点击复制] |
WANG Yihui, YAN Wenjun, DUAN Kexin, YU Kaize. Few⁃Shot Sample Specific Emitter Identification Method Based on Data Augmentation[J]. Radar Science and Technology, 2024, 22(1): 104-110.[点击复制] |
|
摘要: |
临近空间高动态飞行器在高速飞行过程中与大气强烈作用,形成十分复杂的高温等离子鞘套,改变了目标的散射回波特性,给目标探测带来不确定性,需要及时判别当前目标是否处于等离子鞘套状态。本文提出一种基于波形熵判别和变带宽确认的等离子鞘套自动判别方法,首先提取目标回波波形熵、包络长度等特征信息,利用模糊分类器进行基于波形熵的群目标判别,其次根据鞘套与目标和目标之间的距离与信号带宽的关系差异,通过检测不同带宽回波的包络长度变化,对鞘套和目标进行判别。仿真结果验证了本文所提方法的有效性。 |
关键词: 辐射源个体识别 小样本 数据增强 辅助分类生成对抗网络 |
DOI:DOI:10.3969/j.issn.1672-2337.2024.01.014 |
分类号:TN911.7 |
基金项目:国家自然科学基金面上项目(No.62271499,62371465);电磁空间安全全国重点实验室开放基金 |
|
Few⁃Shot Sample Specific Emitter Identification Method Based on Data Augmentation |
WANG Yihui, YAN Wenjun, DUAN Kexin, YU Kaize
|
1. Naval Aviation University, Yantai 264001, China;2. Unit 31401 of PLA, Yantai 264001, China;3. Unit 91423 of PLA, Yantai 264001, China
|
Abstract: |
Aiming at the dilemma of low recognition accuracy of few?shot learning and due to difficult acquisition of sample data and incomplete capture sample categories, a method for few?shot specific emitter identification (SEI) based on data enhancement is proposed. Firstly, the dataset is expanded by time domain flipping, amplitude inversion, amplitude scaling and noise processing. Secondly, the noise sequence and the category label are input into the generator to further generate the “false and true” generated samples, which improves the diversity of the generated samples and synchronously completes discrimination and category prediction of true and false samples through the auxiliary classifier. Finally, according to the dynamic feedback of the discriminator, the weight of the loss function is gradually adjusted, and the network is further optimized by focusing on high?quality samples to improve the recognition accuracy. |
Key words: specific emitter identification(SEI) few⁃shot samples data augmentation auxiliary classifier GAN |