• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:卓奕弘,熊敬伟,潘继飞,郭林青. 基于多尺度注意力机制ResNet的雷达工作模式识别[J]. 雷达科学与技术, 2024, 22(2): 170-179.[点击复制]
ZHUO Yihong, XIONG Jingwei, PAN Jifei, GUO Linqing. Radar Working Mode Recognition Based on Multi⁃Scale Attention Mechanism ResNet[J]. Radar Science and Technology, 2024, 22(2): 170-179.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 3438次   下载 431次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于多尺度注意力机制ResNet的雷达工作模式识别
卓奕弘,熊敬伟,潘继飞,郭林青
国防科技大学电子对抗学院, 安徽合肥 230037
摘要:
雷达工作模式识别是解释雷达行为和功能的基本任务。现有方法难以在信号灵活、环境复杂的条件下筛除脉冲序列中不同空间和不同通道中的冗余信息。本文在深度残差网络的基础上,增加了空间自注意力模块和通道自注意力模块以适应上述信号特点。模型引入自注意力机制以实现雷达序列不同空间和通道的自适应权值分配,使网络能更有效地关注更具差异性的信息,实现了极端条件下雷达工作模式的高精度识别。同经典深度学习网络AlexNet、LeNet、VGGNet、ResNet以及常规深度卷积网络相比,该模型在0~50%漏脉冲条件下,平均识别率提升了36%,在独立测试集40%漏脉冲比例下模型仍然具备90%以上的识别率,证明了所提网络的优越性和有效性。
关键词:  多功能雷达  模式识别  自注意力机制  特征提取  深度学习
DOI:DOI:10.3969/j.issn.1672-2337.2024.02.007
分类号:TN971
基金项目:
Radar Working Mode Recognition Based on Multi⁃Scale Attention Mechanism ResNet
ZHUO Yihong, XIONG Jingwei, PAN Jifei, GUO Linqing
College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China
Abstract:
Mode recognition is a basic task to interpret radar behavior and function. Under the condition of flexible signal and complex environment, the existing methods are difficult to screen out the redundant information in different spaces and channels in the pulse sequence. In this paper, based on the deep residual network, a spatial self?attention module and a channel self?attention module are added to adapt to the above signal characteristics. The self?attention mechanism is introduced in the model to realize the adaptive weight allocation of different spaces and channels of radar sequence, so that the network can focus on more diverse information more efficiently. The high precision recognition of radar working mode is realized under extreme conditions. Compared with classical deep learning networks such as AlexNet, LeNet, VGGNet, ResNet and conventional deep convolutional networks, the average recognition rate of this model is improved by 36% under the condition of 0~50% leakage pulses. In the independent test set, the model still has a recognition rate of more than 90% under the 40% leakage pulse. The advantages and effectiveness of the proposed network are proved.
Key words:  multifunctional radar  mode recognition  self⁃attention mechanism  feature extraction  deep learning

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司