• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:王国丽, 袁晨昊, 杨 箫, 邓志安. 基于能量预检测与时频降噪的脉冲检测方法[J]. 雷达科学与技术, 2025, 23(3): 328-336.[点击复制]
WANG Guoli, YUAN Chenhao, YANG Xiao, DENG Zhian. Signal Detection Method Based on Energy Pre-Detection and Time-Frequency Denoising[J]. Radar Science and Technology, 2025, 23(3): 328-336.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2次   下载 0次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于能量预检测与时频降噪的脉冲检测方法
王国丽, 袁晨昊, 杨 箫, 邓志安
1. 哈尔滨工程大学信息与通信工程学院, 黑龙江哈尔滨 150001;2. 先进船舶通信与信息技术工业和信息化部重点实验室, 黑龙江哈尔滨 150001
摘要:
为了解决现有检测算法在低信噪比下因脉冲分裂而无法准确提取到达时间与脉冲宽度的问题,本文提出基于能量预检测与时频降噪处理的脉冲检测方法。首先利用待检测信号的频谱估计出噪底功率,用于后续计算检测阈值;然后用能量检测粗定位可能含有目标脉冲的信号段;再用分裂脉冲识别与合并模块处理各信号段,将时间邻近的低信噪比信号段合并为一段信号;再用基于同步提取变换的时频降噪方法处理低信噪比信号段,以达到时频域降噪和去除虚警脉冲的目的;最后用自相关检测提取各信号段的到达时间与脉冲宽度。仿真实验结果表明,本文脉冲检测方法能够适用于线性调频、正弦调频、巴克码调相、单频与V型调频信号多种调制类型信号,当信噪比在-1.5 dB及以上时,该方法有95%以上的概率检测到脉冲并准确提取到到达时间与脉冲宽度。
关键词:  脉冲检测  噪底功率估计  分裂脉冲识别与合并  时频降噪  自相关检测
DOI:DOI:10.3969/j.issn.1672-2337.2025.03.010
分类号:TN971
基金项目:国家自然科学基金(No.62371152)
Signal Detection Method Based on Energy Pre-Detection and Time-Frequency Denoising
WANG Guoli, YUAN Chenhao, YANG Xiao, DENG Zhian
1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;2. Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and InformationTechnology, Harbin 150001, China
Abstract:
In order to solve the problem that existing detection algorithms cannot accurately extract the arrival time and pulse width due to pulse splitting under low signal-to-noise ratio, this paper proposes a pulse detection method based on energy pre-detection and time-frequency domain denoising processing. Firstly, the noise floor power is estima-ted by using its spectrum of the signal to be detected, which is used for subsequent calculation of the detection threshold. Then, the energy detection module is used to roughly locate the signal segment that may contain the target pulse. The split pulse recognition and merging module processes each signal segment, merging the low signal-to-noise ratio signal segments with adjacent time into one signal segment. Next, the time-frequency denoising method based on synchronous extraction transform is used to process the low signal-to-noise ratio signal segments to achieve the purpose of noise reduction and false alarm pulses removal in the time-frequency domain. Finally, the autocorrelation detection method is used to extract the arrival time and pulse width of each signal segment. The simulation results show that the pulse detection method proposed in this paper can be applied to various modulation types, including linear frequency modulation, sinusoidal frequency modulation, Barker code phase modulation, single frequency and V-shaped frequency modulation signals. When the signal-to-noise ratio is -1.5 dB and above, the method has a probability of over 95% to detect the pulse and accurately extract the arrival time and pulse width.
Key words:  pulse detection  noise floor power estimation  split pulse recognition and merging  time-frequency denoising  autocorrelation detection

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司