• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:李 明, 孙国皓, 何子述. 基于截断核范数正则化的协方差矩阵估计[J]. 雷达科学与技术, 2020, 18(6): 633-639.[点击复制]
LI Ming, SUN Guohao, HE Zishu. Truncated Nuclear Norm Regularization Based Covariance Matrix Estimation[J]. Radar Science and Technology, 2020, 18(6): 633-639.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 6089次   下载 758次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于截断核范数正则化的协方差矩阵估计
李 明, 孙国皓, 何子述
1. 电子科技大学信息与通信工程学院, 四川成都611731;2. 四川大学空天科学与工程学院, 四川成都610065
摘要:
非均匀杂波环境导致机载雷达用于协方差矩阵估计的样本不足。本文提出了一种基于截断核范数正则化(Truncated Nuclear Norm Regularization, TNNR)的协方差矩阵估计算法以满足小样本条件下机载雷达空时自适应处理(Space Time Adaptive Processing, STAP)应用。本文利用TNNR确保所估计杂波协方差矩阵(Clutter Covariance Matrix, CCM)的低秩特性,并将NP-hard问题转换为凸优化问题。不同于常规的秩最小化算法,如核范数松弛方法,本文所提出的TNNR算法仅最小化与矩阵的秩无关的较小奇异值的和,可以更加准确地约束矩阵的秩。在此基础上本文还利用CCM的块Toeplitz结构先验信息,可确保在连续域上进行信号建模,有效避免网格点失配问题。仿真结果表明本文所提出的算法在小样本条件下可更加准确地估计CCM且STAP性能更优。
关键词:  机载雷达  非均匀杂波  截断核范数  空时自适应处理  协方差矩阵估计
DOI:DOI:10.3969/j.issn.1672-2337.2020.06.009
分类号:TN958
基金项目:中国航天科技集团有限公司多传感器探测与识别技术研发中心种子基金资助项目; 国家自然科学基金(No.61671139, 61771095)
Truncated Nuclear Norm Regularization Based Covariance Matrix Estimation
LI Ming, SUN Guohao, HE Zishu
1.School of Information and Communication Engineering, University of Electronic Science and Technology of China,Chengdu 611731, China;2. School of Aeronautics and Astronautics, Sichuan University, Chengdu610065, China
Abstract:
The heterogeneous clutter environment leads to the shortage of samples for covariance matrix estimation of airborne radar. this paper proposes a novel covariance matrix estimation method based on truncated nuclear norm regularization (TNNR) for airborne space time adaptive processing (STAP) with small samples. Specifically, this paper exploits TNNR to ensure the low rank estimation of the clutter covariance matrix (CCM) and transforms the NP-hard problem to a convex optimization problem. Different from the general rank minimization approach, such as nuclear norm relaxation method, the proposed TNNR algorithm in this paper only minimizes the sum of small singular values, which are independent of the rank of a matrix, approximating the rank more accurately. Moreover, the paper also utilizes the prior knowledge of the block-Toeplitz structure of the CCM, which can ensure the model established in continuous domain, avoiding the off-grid problem effectively. The simulation results indicate that the proposed algorithm can estimate CCM more accurately and achieve better STAP performance.
Key words:  airborne radar  heterogeneous clutter  truncated nuclear norm  space time adaptive processing  covariance matrix estimation

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司