• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:陈金立,张程,陈宣,李家强. 阵元失效下基于矩阵重构的MIMO雷达DOA估计[J]. 雷达科学与技术, 2022, 20(5): 524-530.[点击复制]
CHEN Jinli, ZHANG Cheng, CHEN Xuan, LI Jiaqiang. DOA Estimation Based on Matrix Reconstruction in MIMO Radar Under Array Element Failures[J]. Radar Science and Technology, 2022, 20(5): 524-530.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5524次   下载 864次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
阵元失效下基于矩阵重构的MIMO雷达DOA估计
陈金立,张程,陈宣,李家强
1. 南京信息工程大学气象灾害预报预警与评估协同创新中心, 江苏南京 210044;2. 南京信息工程大学电子与信息工程学院, 江苏南京 210044;3. 南京信息工程大学物理与光电工程学院, 江苏南京 210044
摘要:
针对阵元失效下MIMO雷达目标DOA估计性能下降问题,提出一种基于虚拟阵列采样数据矩阵重构的MIMO雷达DOA估计方法。MIMO雷达的阵元失效分为冗余虚拟阵元失效和非冗余虚拟阵元失效两种情况。当冗余虚拟阵元失效时,通过合并空间上位置相同的正常冗余虚拟阵元输出数据以实现信号降维与失效阵元数据填充。当非冗余虚拟阵元失效时,经降维填充后的数据矩阵中仍存在整行缺失数据,根据降维数据矩阵的低秩和稀疏先验,建立带低秩和稀疏约束的矩阵填充模型,并利用ALM-ADMM算法求解来恢复完整的降维数据矩阵。最后利用root-MUSIC算法估计目标DOA。仿真结果表明,本文方法能够有效提高MIMO雷达在阵元失效时的DOA估计精度。
关键词:  MIMO雷达  阵元失效  DOA估计  ALM-ADMM算法
DOI:DOI:10.3969/j.issn.1672-2337.2022.05.008
分类号:TN911.23;TN958
基金项目:国家自然科学基金(No.62071238, 61801231); 江苏省自然科学基金(No.BK20191399)
DOA Estimation Based on Matrix Reconstruction in MIMO Radar Under Array Element Failures
CHEN Jinli, ZHANG Cheng, CHEN Xuan, LI Jiaqiang
1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China;2. School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;3. School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract:
Aiming at the performance degradation of direction of arrival (DOA) estimation for multiple-input multiple-output (MIMO) radar with array element failures, a DOA estimation method based on virtual array sampled data matrix reconstruction is proposed. The array element failure scenarios of MIMO radar can be divided into redundant virtual array element failures and non-redundant virtual array element failures. For redundant virtual array sensor failures, the output data of normal redundant virtual array elements with the same position in space are combined to achieve signal dimension reduction and fill the positions of the failed physical array elements. For the non-redundant virtual array element failure scenario, the whole row of missing data still exists in the reduced-dimension sampled data matrix obtained by using the redundancy of virtual array elements. Inspired by the facts that the reduced-dimension data has the low-rank and sparsity priors, a joint low-rank and sparsity prior’s constrained matrix completion model is established. The augmented Lagrange method-alternating direction method of multipliers (ALM-ADMM) algorithm is exploited to solve this optimization problem, and the missing data in the reduced-dimension sampled data matrix can be recovered perfectly. Finally, the root-MUSIC algorithm is employed to estimate the DOAs from the full reconstructed data matrix. Simulation results validate that the proposed method can effectively improve the DOA estimation accuracy of MIMO radar under array element failures.
Key words:  MIMO radar  array element failure  DOA estimation  ALM-ADMM algorithm

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司