• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:王海峰,行鸿彦,孙江,苏新. 基于差分进化的随机共振混沌小信号检测[J]. 雷达科学与技术, 2022, 20(5): 531-538.[点击复制]
WANG Haifeng, XING Hongyan, SUN Jiang, SU Xin. Detection of Stochastic Resonance Chaotic Small Signal Based on Differential Evolution[J]. Radar Science and Technology, 2022, 20(5): 531-538.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5450次   下载 873次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于差分进化的随机共振混沌小信号检测
王海峰,行鸿彦,孙江,苏新
1. 南京信息工程大学江苏省气象灾害预报预警与评估协同创新中心, 江苏南京 210044;2. 河海大学物联网工程学院, 江苏常州 231022
摘要:
针对传统随机共振小信号检测无法对多参数进行同步调优的缺陷,本文提出了一种基于变种差分进化算法的随机共振混沌小信号检测方法。利用变种差分进化算法对Duffing振子的随机共振系统参数进行寻优,以系统输出信噪比为寻优问题的目标函数。为了验证算法的可行性,分别进行低频和高频小信号输入的仿真实验,在低频小信号检测实验中,输出信噪比较混沌变步长萤火虫优化算法平均提升1.98dB;高频小信号检测实验中,结合外差式随机共振理论,能够准确恢复出高频小信号对应低频段处的小信号,进一步推导出高频小信号的存在;对实测海杂波数据进行仿真实验,实验结果表明该方法能够有效地检测出淹没在海杂波背景下的混沌小信号。
关键词:  混沌小信号  变种差分进化算法  随机共振  微弱信号检测  海杂波
DOI:DOI:10.3969/j.issn.1672-2337.2022.05.009
分类号:TN911.7
基金项目:国家重点研发计划资助项目(No.2021YFE0105500);国家自然科学基金(No.62171228)
Detection of Stochastic Resonance Chaotic Small Signal Based on Differential Evolution
WANG Haifeng, XING Hongyan, SUN Jiang, SU Xin
1. Jiangsu Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. College of IoT Engineering, Hohai University, Changzhou 213022, China
Abstract:
Aiming at the defect that the traditional stochastic resonance small signal detection cannot synchronously tune multiple parameters, a chaotic small signal detection method based on the variant differential evolution algorithm is proposed in this paper. Variant differential evolution algorithm is used to optimize the parameters of stochastic resonance system of Duffing oscillator. The SNR of system output is taken as the objective function. In order to verify the feasibility of the algorithm, the simulation experiments of low frequency and high frequency small signal input were carried out respectively. In the low frequency small signal detection experiment, the output SNR is improved 1.98 dB on average compared to the chaotic variable step size firefly optimization algorithm. In the high-frequency small signal detection experiment, combined with heterodyne stochastic resonance theory, the high-frequency small signal corresponding to the small signal in the low-frequency band can be accurately recovered, and the existence of high-frequency small signal can be further deduced. Simulation experiments on sea clutter data show that this method can effectively detect small chaotic signals submerged in sea clutter background.
Key words:  chaotic small signal  variant differential evolution algorithm  stochastic resonance  weak signal detection  sea clutter

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司