• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:贡文新, 余泽琰, 杨柳旺, 楚文静, 万相奎. 基于毫米波雷达的无人机障碍物分类方法[J]. 雷达科学与技术, 2025, 23(3): 317-327.[点击复制]
GONG Wenxin, YU Zeyan, YANG Liuwang, CHU Wenjin, WAN Xiangkui. Millimeter-Wave Radar-Based Obstacle Classification Method for Unmanned Aerial Vehicles[J]. Radar Science and Technology, 2025, 23(3): 317-327.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 0次   下载 0次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于毫米波雷达的无人机障碍物分类方法
贡文新, 余泽琰, 杨柳旺, 楚文静, 万相奎
湖北工业大学太阳能高效利用及储能运行控制湖北省重点实验室, 湖北武汉 430068
摘要:
无人机巡线作为检测电力线的重要手段,在飞行过程中准确识别障碍物是保障巡线任务可靠完成的关键。但目前对无人机巡线过程中常见障碍物如电力线、电力塔、树木的识别受恶劣天气环境干扰严重,致使误判和漏判。为此,基于毫米波雷达传感器具有不受天气、光线因素影响,在复杂环境中工作稳定等特点,本文提出基于毫米波雷达的无人机障碍物分类方法。该方法首先通过毫米波雷达采集3类障碍物的原始数据并提取其距离-速度多普勒及距离-方位角多普勒信息,接着分别通过特征值分解及共生灰度矩阵实现特征提取,最后通过蛇鹭优化算法实现对3类障碍物的目标分类。实验结果表明,本文方法对电力线、电力塔和树木的整体识别准确率达89.4%,与传统方法相比具有较高的识别准确率及鲁棒性。
关键词:  毫米波雷达  障碍物分类  特征提取  蛇鹭优化算法
DOI:DOI:10.3969/j.issn.1672-2337.2025.03.009
分类号:TN958;TM755
基金项目:湖北省自然科学基金(No.2022CFA007); 武汉市知识创新专项项目(No.2022020801010258)
Millimeter-Wave Radar-Based Obstacle Classification Method for Unmanned Aerial Vehicles
GONG Wenxin, YU Zeyan, YANG Liuwang, CHU Wenjin, WAN Xiangkui
Hubei Key Laboratory for High Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China
Abstract:
Using drones for power line inspection is a crucial method to ensure the reliability of power line maintenance. Accurately identifying obstacles during flight is essential for the successful completion of inspection tasks. However, the recognition of common obstacles during drone inspections, such as power lines, power towers, and trees, is often compromised by adverse weather conditions, leading to false detections or missed detections. To address this, a millimeter-wave radar-based obstacle classification method for drones is proposed, leveraging the radar’s stability in complex environments and immunity to weather and lighting interference. Firstly, by using millimeter-wave radar, the raw data of the three types of obstacles are collected, and the range-velocity Doppler and range-angle Doppler information are extracted. Then, the feature extraction is achieved through singular value decomposition (SVD) and gray-level co-occurrence matrix (GLCM), followed by classification of the three obstacle types using the secretary bird optimization algorithm (SBOA). Experimental results show that this method achieves an overall recognition accuracy of 89.4% for power lines, power towers, and trees, offering higher accuracy and robustness compared to traditional methods.
Key words:  millimeter-wave radar  obstacle classification  feature extraction  SBOA

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司